• No products in the cart.

203.2.3 Multiple Logistic Regression

Machine Learning with R

LAB: Multiple Logistic Regression

In previous section, we studied about Logistic Function to Regression

  • Import Dataset: Fiberbits/Fiberbits.csv
  • Active_cust variable indicates whether the customer is active or already left the network.
  • Build a model to predict the chance of attrition for a given customer using all the features.
  • How good is your model?
  • Import Dataset: Fiberbits/Fiberbits.csv
Fiberbits <- read.csv("C:\\Amrita\\Datavedi\\Fiberbits\\Fiberbits.csv")
  • Build a model to predict the chance of attrition for a given customer using all the features.
Fiberbits_model_1<-glm(active_cust~.,family=binomial(),data=Fiberbits)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(Fiberbits_model_1)
## 
## Call:
## glm(formula = active_cust ~ ., family = binomial(), data = Fiberbits)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -8.4904  -0.8752   0.4055   0.7619   2.9465  
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                -1.761e+01  3.008e-01  -58.54   <2e-16 ***
## income                      1.710e-03  8.213e-05   20.82   <2e-16 ***
## months_on_network           2.880e-02  1.005e-03   28.65   <2e-16 ***
## Num_complaints             -6.865e-01  3.010e-02  -22.81   <2e-16 ***
## number_plan_changes        -1.896e-01  7.603e-03  -24.94   <2e-16 ***
## relocated                  -3.163e+00  3.957e-02  -79.93   <2e-16 ***
## monthly_bill               -2.198e-03  1.571e-04  -13.99   <2e-16 ***
## technical_issues_per_month -3.904e-01  7.152e-03  -54.58   <2e-16 ***
## Speed_test_result           2.222e-01  2.378e-03   93.44   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 136149  on 99999  degrees of freedom
## Residual deviance:  98359  on 99991  degrees of freedom
## AIC: 98377
## 
## Number of Fisher Scoring iterations: 8

The next post is about goodness of fit for logistic regression.

Statinfer

Statinfer derived from Statistical inference. We provide training in various Data Analytics and Data Science courses and assist candidates in securing placements.

Contact Us

info@statinfer.com

+91- 9676098897

+91- 9494762485

 

Our Social Links

top
© 2020. All Rights Reserved.