• No products in the cart.

203.2.4 Goodness of fit for Logistic Regression

Goodness of Fit for a Logistic Regression

In previous section, we studied about Multiple Logistic Regression

  • Classification Matrix
  • Accuracy

Classification Table & Accuracy

Predicted / Actual 0 1
0 True Positive (TP) False Positive (FP)
1 False Negative (FN) True Negative (TN)
  • Also known as confusion matrix
  • \(Accuracy=\frac{(TP+TN)}{(TP+FP+FN+TN)}\)

Classification Table in R

threshold=0.5
predicted_values<-ifelse(predict(prod_sales_Logit_model,type="response")>threshold,1,0)
actual_values<-prod_sales_Logit_model$y

conf_matrix<-table(predicted_values,actual_values)
conf_matrix
##                 actual_values
## predicted_values   0   1
##                0 257   3
##                1   5 202

Accuracy in R

accuracy<-(conf_matrix[1,1]+conf_matrix[2,2])/(sum(conf_matrix))
accuracy
## [1] 0.9828694

 

The next post is about multi collinearity an individual impact of variables in logistic regression.

Statinfer

Statinfer derived from Statistical inference. We provide training in various Data Analytics and Data Science courses and assist candidates in securing placements.

Contact Us

info@statinfer.com

+91- 9676098897

+91- 9494762485

 

Our Social Links

top
© 2020. All Rights Reserved.