• No products in the cart.

203.3.2 The Decision Tree Approach

Mechine learning With R

The Decision Tree Approach

In previous section, we studied about  Decision Trees in r : Segmentation

  • The aim is to divide the whole population or the data set into segments
  • The segmentation need to be useful for business decision making.
  • If one class is really dominating in a segments
  • Then it will be easy for us to classify the unknown items
  • Then its very easy for applying business strategy
  • For example:
  • It takes no great skill to say that the customers have 50% chance to buy and 50% chance to not buy.
  • A good splitting criterion segments the customers with 90% -10% buying probability, say Gender=“Female” customers have 5% buying probability and 95% not buying

Example Sales Segmentation Based on Age

Example Sales Segmentation Based on Gender

Main Questions

  • Ok we are looking for pure segments
  • Dataset has many attributes
  • Which is the right attribute for pure segmentation?
  • Can we start with any attribute?
  • Which attribute to start from? – The best separating attribute
  • Customer Age can impact the sales, gender can impact sales , customer place and demographics can impact the sales. How to identify the best attribute and the split?

In next section, we will be studying about How Decision tree Splits works?

Statinfer

Statinfer derived from Statistical inference. We provide training in various Data Analytics and Data Science courses and assist candidates in securing placements.

Contact Us

info@statinfer.com

+91- 9676098897

+91- 9494762485

 

Our Social Links

top
© 2020. All Rights Reserved.