Statinfer

203.7.3 Types of Ensemble Models

popular ensemble methodologies

In previous section, we studied about Ensemble Models

In this short post we will just see the types of Ensemble models.

Types of Ensemble Models

  • The above example is a very primitive type of ensemble model. There are better and statistically stronger ensemble methods that will yield better results
  • Two most popular ensemble methodologies are
    • Bagging
    • Boosting

Bagging

  • Take multiple boot strap samples from the population and build classifiers on each of the samples. For prediction take mean or mode of all the individual model predictions.
  • Bagging has two major parts 1) Boot strap sampling 2) Aggregation of learners
  • Bagging = Bootstrap Aggregating
  • In Bagging we combine many unstable models to produce a stable model. Hence, the predictors will be very reliable(less variance in the final model).

Boot strapping

  • We have a training data is of size N
  • Draw random sample with replacement of size N – This gives a new dataset, it might have repeated observations, some observations might not have even appeared once.
  • We are selecting records one-at-a-time, returning each selected record back in the population, giving it a chance to be selected again.
  • Create B such new datasets. These are called boot strap datasets.
The next post is about the Bagging Algorithm.

0 responses on "203.7.3 Types of Ensemble Models"

Leave a Message

Blog Posts

Hurry up!!!

"use coupon code for FLAT 30% discount"  datascientistoffer        ___________________________________      Subscribe to our youtube channel. Get access to video tutorials.                

Contact Us

Statinfer Software Solutions#647 2nd floor 1st Main, Indira Nagar 1st Stage, 100 feet road,Indranagar Bangalore,Karnataka, Pin code:-560038 Landmarks: Opp. Namma Metro Pillar 48.

Connect with us

linkin fn twitter g

How to become a Data Scientist.?

top