In previous section, we studied about Introduction to SVM
In this practice session we will cover all the things we discussed about simple classifiers in the last post.
LAB: Simple Classifiers
- Dataset: Fraud Transaction/Transactions_sample.csv
- Draw a classification graph that shows all the classes
- Build a logistic regression classifier
- Draw the classifier on the data plot
Solution
Transactions_sample <- read.csv("C:\\Amrita\\Datavedi\\Fraud Transaction\\Transactions_sample.csv")
head(Transactions_sample)
## id Total_Amount Tr_Count_week Fraud_id
## 1 16078 7294.60 4.79 0
## 2 41365 7659.53 2.45 0
## 3 11666 8259.29 10.77 0
## 4 11824 11630.25 15.29 1
## 5 36414 12286.63 22.18 1
## 6 90 12783.34 16.34 1
names(Transactions_sample)
## [1] "id" "Total_Amount" "Tr_Count_week" "Fraud_id"
library(ggplot2)
ggplot(Transactions_sample)+geom_point(aes(x=Total_Amount,y=Tr_Count_week,color=factor(Fraud_id),shape=factor(Fraud_id)),size=5)
#####Logit model
logit_model<-glm(Fraud_id~Total_Amount+Tr_Count_week,data=Transactions_sample,family=binomial())
logit_model
##
## Call: glm(formula = Fraud_id ~ Total_Amount + Tr_Count_week, family = binomial(),
## data = Transactions_sample)
##
## Coefficients:
## (Intercept) Total_Amount Tr_Count_week
## -26.148132 0.002534 0.108896
##
## Degrees of Freedom: 209 Total (i.e. Null); 207 Residual
## Null Deviance: 291.1
## Residual Deviance: 16.85 AIC: 22.85
###The classifier slope & intercept
coef(logit_model)
## (Intercept) Total_Amount Tr_Count_week
## -26.148131643 0.002533707 0.108895819
coef(logit_model)[1]
## (Intercept)
## -26.14813
coef(logit_model)[2]
## Total_Amount
## 0.002533707
coef(logit_model)[3]
## Tr_Count_week
## 0.1088958
logit_slope <- coef(logit_model)[2]/(-coef(logit_model)[3])
logit_intercept<- coef(logit_model)[1]/(-coef(logit_model)[3])
###The classifier diagram
base<-ggplot(Transactions_sample)+geom_point(aes(x=Total_Amount,y=Tr_Count_week,color=factor(Fraud_id),shape=factor(Fraud_id)),size=5)
base+geom_abline(intercept = logit_intercept , slope = logit_slope, color = "red", size = 2)
The next post is about SVM Algorithm.